TEMPERATURE FIELD OF A COMPOSITE BODY
UNDER MIXED THERMAL CONTACT CONDITIONS

Yu. M. Kolyano and Yu. S. Muzychuk UDC 536.24.01

A heat-conduction equation is obtained for a piecewise-homogeneous body in the
case when nonideal thermal contact conditions are satisfied on part of the con-
necting surface. The temperature field of a composite semiinfinite plate is
investigated as an example.

Taking account of a different species of inclusion and defect on the interface of homo-
geneous elements is essential in investigating the temperature fields of piecewise-homogene-
ous structure elements. The influence of such a species of inclusion and interlayer defect
can be simulated with sufficient accuracy by nonideal thermal contact conditions [1, 2]. An
approach is proposed below to the solution of heat-conduction problems for composite bodies
under inhomogeneous thermal contact conditions.

Let us consider a piecewise-homogeneous body consisting of two heterogeneous bodies
joined along the surface z = d. Nonideal conditions are satisfied in the domain G of the
connecting surface, while ideal thermal contact conditions are satisfied on the remaining
surface. Let N{(x, y) be the characteristic function of the domain G, such that
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We represent the temperature and thermophysical characteristics of the composite body
in the form
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where pi(z) (i = 1, 2) are characteristics of the i-th element of the system, and S_(z) =
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0, z<< 0.

As a result of substituting the generalized conjugate problem [3] for the heat conduc-
tion equation in each of the composite parts of the system, we obtain the following equation:
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Here A(z) and A(z) have the form (1) o op (2) = A = 1/ay.

Having determined the temperature jump and its derivative on the connecting surface
from the nonideal thermal contact conditions [2] by using the characteristic function of
the domain G, and having substituted their values into the right side of (2), we obtain a
partially degenerate differential equation for the heat conduction of the composite body
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where A, = 2hJ; Cy=2c"h; Ki2 = Myfhs; Ry = 2R/A,.

The heat-conduction equation for a piecewise-homogeneous plate can also be obtained
in an analogous manner. Let a composite plate consist of two joined heterogeneous plates
of thickness 28. Nonideal thermal contact conditions [2] are satisfied on the sections
(a(l)i, a(z)i) (i =1, N) of the connecting surface x = £, while heat transfer with the ex-
ternal mediumof temperature tc is accomplished from the side surfaces of the plate. Using
the nonideal thermal contact condition [1], we obtain a partially degenerate differential
equation with piecewise-constant coefficients to determine the integrated characteristics
of the temperature:
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As an illustration we determine the stationary temperature field in a semiinfinite plate
connected to a strip of width X heated along the endface by an external medium of tempera-
ture tc. Heat transfer with the external medium of zero temperature is accomplished from the
side surfaces of the plate, and all the thermophysical characteristics of the half-plane
and the strips are distinct. Nonideal thermal contact conditions are satisfied on the section
(—a, a) of the connecting surface x = . Neglecting terms of lower order of smallness with
respect to h in (4), we arrive at an equation taking account of just the thermal resistance
on part of the contact surface
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The boundary conditions have the form

T‘x—»m = 0’ T‘x:D = tc' (6)
Let us represent the function or as a series in the interval (—a, a)
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Since we have _Zf; e ) from the contact condition and the continuity of the
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Applying the Fourier transform in v to (5) and (6) with (7) taken into account, we ob-

tain
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The general solution of the homogeneous equation corresponding to (9) has the form [4]
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We gelect the following as a particular solution of (9):
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The general solution of (9) is
T=Ty+ Ty

Satisfying the boundry conditions (10) and applying the inverse Fourier transform, we
obtain a system of linear equations from (8) to determine the unknown coefficients:
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The quasiregularity of the infinite system of linear equations (11) was investigated
numerically for different parameters of the problem.

The temperature field of the piecewise-homogeneous plate under consideration has the
form

T - 1.T*,
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Substituting bk = K(®) g%k in the relationships (11) and (12), and passing to the limit
as k(¢ A+ ®, we arrive at a result corresponding to the case of thermal insulation on part
of the connecting surface. In this case we have a system of algebraic equations
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The dimensionless temperature field is computed by means of (12) for different values
of the parameter K'®))., The dependence of the value T* on the interface X = x/§ = L on the
dimensionless coordinate Y = y/8 is represented in Fig. 1 for A = a/d = 50, L = /8§ =
K(l) = 2, Bi, = 0 01, Bi, = 0.04, H = h/§ = 1. Curves l-4 are constructed, respectively, for
the values KKO) =1, 5, 50, 100; curve 5 corresponds to the case of a heat insulated section.
It is seen from Fig. 1 that the gquantity K(“)A does not influence the temperature of the
contact surface outside the inclusion substantially. As K'%/) increases, the magnitude of
the temperature jump grows, where the maximum value of the jump is reached in the thermal
insulation case.

NOTATION

X, ¥, 2, Cartesian coordinates; t, temperature; T, time; h, thickness of the inclusion;
S+{x), asymmetric unit Heaviside functions; W(x, y, 2), heat source distribution densit%; Aos
i, heat-conduction coefficients of the inclusion and the i-th element of the system; c\?®
bulk specific heat of the inclusion; 2§, plate thickness; T, integrated temperature charac-
teristic; Ry, thermal resistance of the inclusion; a(l)z, heat transfer coefficient from
the surfaces z = #§ of the i-th element of a composite plate; X, Y, dimensionless Cartesian
coordinates; Bii = a i z8/Xi, Biot criterion for the i-th element of a plate; aj, thermal
diffusivity coefficient for the i-~th element of the system.
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POTENTIALS OF THE PROBLEM OF STEADY-STATE OSCILLATIONS
OF THE GENERALIZED ASYMMETRICAL THERMOELASTICITY OF A COSSERAT MEDIUM

V1. N. Smirnov and E. V. Frolova uDC 539.3

The potentials of a simple layer and a double layer are determined, along with
the volume potential of the problem of steady-state oscillations of the general-
ized thermoelasticity of a Cosserat medium; these potentials lead to integral
equations of the second kind for the problem.

In the investigation of laser-induced thermal strains of optical materials it is neces-
sary to treat more complex models than the classical versions in some cases. First of all,
the finiteness of the heat propagation velocity must be considered in the study of heat-re-
lease processes associated with the pulsed application of optical radiation, i.e., it is
necessary to go from classical to generalized thermomechanics [1]. Second, when the applica-
tion of such materials as polycrystalline aggregates or an optical ceramic is considered, it
is required to include not only the regular microstresses, but also couple stresses [2],
necessitating the introduction of the Cosserat continuum model. The generalized thermoelas-
ticity equations for a Cosserat medium have been derived previously [3]. An important spe-
cial case is the problem of steady-state harmonic oscillations of a homogeneous isotropic
polar-symmetrical medium. The system of equations in the complex amplitudes of the kinemat-
ic variables for an oscillation with frequency ¢ has the form
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One of the methods of analyzing and solving the boundary-value problems of thermoelastic-
ity, particularly for regions bounded by noncanonical surfaces, is to reduce them to integral
equations [4-6], specifically by means of potentials. It is first of all necessary in this
connection to formulate the fundamental solutions [6] of the system (1).

We consider the problem of the action of a point force vector with amplitude value a,
applied at the origin for Y = 0, w = 0. Invoking the regular solution of the homogeneous
system (1) and the Fourier integral transform for the formulation of a particular solution
of the inhomogeneous system, we obtain a solution of the system (1) subject to the Sommerfeld
radiation condition:

1=U"2, 0=0".2, 9= 0" .a,

(2)

Here the tensors U(l), (1) and the vector 8{1) have the form
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